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Abstract

NAND flash memory has become an indispensable 

component in embedded systems because of its versatile 

features such as non-volatility, solid-state reliability, low 

cos,t and high density. Even though NAND flash memory 

gains popularity as data storage, it also can be exploited 

as code memory for XIP (execute-in-place). In this paper, 

we present a cost-efficient memory architecture which 

incorporates NAND flash memory into an existing memory 

hierarchy for code execution. The usefulness of the 

proposed approach is demonstrated with real embedded 

workloads on a real hardware prototyping board.

1. Introduction 

A memory architecture design is a main concern to 

embedded system engineers since it dominates the cost, 

power, and performance of embedded systems. The typical 

memory architecture of embedded systems consists of 

ROM for initial bootstrapping and code execution, RAM 

for working memory, and flash memory for permanent data 

storage. In particular, emerging memory technology, the 

flash memory, is becoming an indispensable component in 

embedded systems due to its versatile features: non-

volatility, solid-state reliability, low power consumption, 

and so on. The most popular flash types are NOR and 

NAND. NOR flash is particularly well suited for code 

storage and execute-in-place (XIP) 1  applications, which 

require high-speed random access. While NAND flash 

provides high density and low-cost data storage, it does not 

lend itself to XIP applications due to the sequential access 

architecture and long access latency. 

Table 1 shows different characteristics of various 

memory devices. Mobile SDRAM has strong points in 

performance but requires high power consumption over the 

1 XIP is the execution of an application directly from the 

Flash instead of having to download the code into the 

systems’ RAM before executing it. 

other memories. Fast SRAM or low power SRAM can be 

selected according to the trade-off between power 

consumption and performance with a high cost. In non-

volatile memories, NOR flash provides fast random access 

speed and low power consumption, but has high cost 

compared with NAND flash. Even though NAND flash 

shows long random read latency, it has advantages in low 

power consumption, storage capacity, and fast erase/write 

performance in contrast to NOR flash. 

Table 1. Characteristics of various memory devices. The 

values in the table were calculated based on SAMSUNG 

2003 memory data sheets [1-2].
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Even though NAND flash memory is widely used as 

data storage in embedded systems, research on NAND 

flash memory as code storage are hardly found in industry 

or academia.  

In this paper, we present a new memory architecture to 

enable NAND flash memory to provide XIP functionality.  

With XIP functionality in NAND flash, the cost of the 

memory system can be reduced since the NAND flash can 

be used as not only as data storage but also as code storage 

for execution. As a result, we can obtain cost-efficient 

memory systems with reasonable performance and power 

consumption. 

The basic idea of our approach is to exploit the locality 

of code access pattern and devise a cache controller for 

repeatedly accessed codes. The prefetching cache is used to 

hide memory latency resulting from NAND memory 

access. In this paper we concentrate on code execution 

even though data memory is also an important aspect of 

memory architecture. There are two major contributions in 

this paper. First, we demonstrate the NAND XIP is feasible 

in real-life systems through a real hardware and 
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commercial OS environment. Second, we apply highly 

optimized caching techniques geared toward the specific 

features of NAND Flash. 

The rest of this paper is organized as follows. In the 

next section, we describe the trend of memory architecture 

for embedded systems. Section 3 reviews related work in 

academia and industry. In Sections 4 and 5, we present our 

new memory architecture based on NAND XIP. In Section 

6, we demonstrate the proposed architecture with real 

workloads on a hardware prototyping board and evaluate 

cost, performance, and power consumption over existing 

memory architectures. Finally, our conclusions and future 

work are drawn in Section 7. 

2. Motivational Systems: Mobile Embedded 

Systems
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Figure 1. Mobile System Trend 

Figure 1 shows mobile system trend in terms of memory 

hierarchy. The first approach is to use NOR and SRAM for 

code storage and working memory, respectively, as shown 

in Figure 1(a). It is appropriate for low-end phones, which 

require medium performance and cost. However, as mobile 

systems evolve into data centric and multimedia-oriented 

applications, high performance and huge capacity for 

permanent storage have become necessary. The second 

architecture (Figure 1(b)) seems to meet the requirements 

in terms of storage capacity through NAND flash memory, 

but its performance is not enough to accommodate 3G 

applications which consist of real-time multimedia 

applications. In addition, the increased number of 

components increases system cost. The third architecture 

(Figure 1(c)) eliminates NOR flash memory and uses 

NAND flash memory for using shadowing 2  technique. 

Copying all code into RAM offers the best performance 

possible, but contributes to the slow boot process. A large 

amount of SDRAM is necessary to hold both the OS and 

the applications. The higher power consumption from 

power hungry SDRAM memory is another problem for 

battery-operated systems.  

2 During system booting time, entire code image is copied 

from permanent storage into systems’ RAM for execution. 

As an improved solution of the third architecture in 

Figure 1(c), demand paging can be used with the assistance 

of operating system and it may reduce the size of SDRAM. 

However, this approach is not applicable to low or mid-end 

mobile system since it requires heavy virtual memory 

management code and MMU.  

Thus, it is important to investigate an efficient memory 

system in terms of cost, performance and power 

consumption. 

3. Related Work 

In the past, researchers have exploited NOR Flash 

memory as caches for magnetic disks due to its low power 

consumption and high-speed characteristics. eNvy focused 

on developing a persistent storage architecture without 

magnetic disks [7]. Fred et al showed that flash memory 

can reduce energy consumption by an order of magnitude, 

compared to magnetic disk, while providing good read 

performance and acceptable write performance [9]. B. 

Marsh et al examined the impact of using flash memory as 

a second-level file system buffer cache to reduce power 

consumption and file access latency on a mobile computer 

[8].  

Li-Pin et al investigated the performance issue of NAND 

flash memory storage subsystems with a striping 

architecture, which uses I/O parallelism [10]. In industry 

[5], NAND XIP is implemented using small size of buffer 

and I/O interface conversion, but the XIP area is limited to 

boot code, thus OS and application codes should be copied 

to system memory. 

In summary, even though several researches have been 

made to obtain the maximum performance and low power 

consumption from data storage, few efforts to support XIP 

in NAND flash are found in academia or industry.

4. NAND XIP Architecture

In this section, we describe NAND XIP architecture. 

First, we look into the structure of NAND flash and 

illustrate basic implementation of NAND XIP based on 

caching mechanism. 

4.1. Background 

A NAND flash memory consists of a fixed number of 

blocks, where each block has 32 pages and each page 

consists of 512 bytes main data and 16 bytes spare data as 

shown in Figure 2. Spare data can be used to store auxiliary 

information such as bad block identification and error 

correction code (ECC) for associated main data. NAND 

flash memories are subject to a condition called “bad 

block”, in which a block cannot be completely erased or 

cannot be written due to partial or 2-bit errors. Bad blocks 
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may exist in NAND flash memory when shipped or may 

occur during operation. 

Spare dataMain data

512 bytes 16 bytes

1 Block
=32 pages

Data register
Spare

register

I/O bus

Figure 2. Structure of NAND flash memory 

In order to implement the NAND XIP, we should 

consider the following points.  

Average memory access time 

Worst case handling 

Bad block management 

The performance of memory system is measured by 

average access time [3]. In order to implement XIP 

functionality, the average access time of NAND flash 

should be comparable to that of other memories such as 

NOR, SRAM and SDRAM. Though average memory 

access time is a good metric for performance evaluation, 

worst-case handling, or cache miss handling is another 

problem in practical view since most mobile systems such 

as cellular phones include time-critical interrupt handling 

such as call processing. For instance, if the time-critical 

interrupt occurs during cache miss handling, the system 

may not satisfy given deadline and to make it worse, it may 

lose data or connection. The third aspect to be considered 

in NAND XIP is to manage bad blocks, which are inherent 

in NAND flash memory because bad blocks cause 

discontinuous memory space, which is intolerable for code 

execution.

4.2. Basic Implementation 
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Figure 3. NAND XIP controller 

The proposed architecture consists of a small amount of 

SRAM for cache, interface conversion logic, the control 

logic and NAND Flash as shown in Figure 3. Interface 

conversion is necessary to connect the I/O interface of 

NAND flash to memory bus. For cache mechanism, direct 

map cache with victim cache is adopted based on Jouppi’s 

work in [4] with optimization for NAND flash. In [4], the 

victim cache is accessed on a main cache miss; if the 

address hits the victim cache, the data returned to the CPU 

and at the same time it is promoted to the main cache; the 

replaced block in the main cache is moved to the victim 

cache, therefore performing a “swap”. If the victim cache 

also misses, NAND flash access is performed; the 

incoming data fills the main cache, and the replaced block 

will be moved to the victim cache. In next section, we 

modify the above “swap” algorithm using system memory 

and page address translation table (PAT). The prefetching 

cache is used to hide memory latency resulting from 

NAND memory access. Several hardware prefetching 

techniques can be found in literature [12]. In our case, 

prefetching information is analyzed through profiling 

process and the prefetching information is stored in spare 

data at code image building time.

5. Intelligent Caching: Priority-based Caching 

Though the basic implementation is suitable for 

application code which shows its spatial and temporal 

localities, it may be less effective in systems code which 

has a complex functionality, a large size, and interrupt-

driven control transfers among its procedures [13]. 

Torrellas et al. presented that the operating system has the 

characteristics that large sections of its code are rarely 

accessed and suffers considerable interference within 

popular execution paths [13]. For example, periodic timer 

interrupt, rarely-executed special-case code, and plenty of 

loop-less code disrupt the localities. On the other hand, 

real-time applications should be retained as long as 

possible to satisfy the timing constraints3. In this paper, we 

distinguish the different cache behavior between system 

and application codes, and adapt it to the page-based 

NAND architecture. We apply profile-guided static 

analysis of code access pattern. 

We can divide code pages into three categories 

depending on their access cost: high priority, mid priority 

and low priority pages. Even though the priority can be 

determined by various objectives, we set the priority to 

pages based on the number of references to pages and their 

criticality. For example, if a specific page is referenced 

more frequently or has time critical codes, it is classified as 

a high-priority page and should be cached or retained in 

cache to reduce the later access cost in case that the page is 

in NAND flash memory. OS-related code, system libraries 

and real-time applications have high-priority pages. On the 

3 In this paper, real-time applications indicate multimedia 

applications with soft real-time constraints. 
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other hand, mid-priority page is defined to be normal 

application code which is handled by normal caching 

policy. Finally, low-priority page corresponds to sequential 

code such as initialization code, which is rarely executed. 

PAT is introduced to remap pages in bad blocks to pages in 

good blocks and to remap requested pages to swapped 

pages in system memory. We illustrate the caching 

mechanism in detail in Figure 4. First, when page A with 

high-priority is requested, it is cached from NAND flash to 

main cache. Next, when page B is requested from the CPU, 

it should be moved to main cache or system memory. Here 

assuming that page B is in conflict with page A, page B is 

moved to system memory (SRAM/SDRAM) since page B 

is low priority page (“L” in spare area of NAND flash 

memory means low-priority). At the same time, PAT is 

updated so that later access to page B is referred to system 

memory. Again, when page C is requested and in conflict 

with page A, page C replaces page A and page A is 

discarded from main cache since C’s priority is high. The 

evicted page A is moved to victim cache. In summary, on 

NAND flash’s page demand, the controller discards or 

swaps existing cache page according to the priority 

information stored in spare area data. The detail algorithm 

is explained in Figure 5. Another usage of spare area data 

is to store prefetching information based on profiling 

information gathered during code execution. This static 

prefetching technique improves memory latency hiding 

without miss penalty from miss-prediction at run-time. 

C

Main cache Control

Data bus

Address bus

A H
B

NAND SRAM/SDRAM

A

Vic tim

Page address translation table

B L
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Figure 4. Intelligent Caching Architecture 
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Figure 5. Intelligent Caching Architecture 

6. Experimental Setup 

This section presents our experiment environment. Our 

environment consists of a prototyping board, our in-house 

cache simulator with pattern analysis and a real workload, 

namely PocketPC [6] as shown in Figure 6. The 

prototyping board is composed of: main board and 

daughter board (a yellow rectangle in Figure 6). The main 

board has ARM9-based micro-controller, SDRAM, NOR 

flash and so on. The daughter board contains an FPGA for 

cache controller and victim cache, fast SRAM for tag and 

cache memory, and two NAND flash memories. The 

daughter board is used not only to implement a real cache 

configuration on FPGA but also to gather memory address 

traces from running applications. In Figure 7, one NAND is 

dedicated to NAND XIP and the other NAND is dedicated 

for collecting memory traces from host bus. Trace 

collection function is started and stopped by using manual 

switches and manual switch’s on/off interval determines 

the time period for trace gathering. Collected address traces 

are stored for cache simulator. 

The specification of main processor and NAND flash 

is shown in Table 2. The cache simulator explores various 

parameters such as miss rate, replacement policy, 

assoicativity, and cache size based on memory traces from 

the prototyping board. The real embedded workload, 

PocketPC supports XIP-enabled image based on the 

existing ROMFS file systems in which each application can 

be directly executed without being loaded into RAM.  

Table 1: The specification of the prototyping board 

Parameter Configuration

CPU clock

L1 Icache

200 MHz

64way, 32byte line, 8KB

NAND read initial latency 10us

NAND serial read time 50ns

Bus width 16bit

SRAM read time 10ns

SDRAM read time 90ns

NOR read time 200ns

NAND

SRAM

FPGA
PocketPC

ARM9-based

Processor

SDRAM

Cache simulatorCache simulator Memory
Trace

cache 

parameters
memory

addresses

Pattern
analysis

Figure 6. A prototyping board for NAND XIP 
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6.1. Experimental Results 

In Figure 8, we compare the miss ratio over various 

configuration parameters such as associativity, replacement 

policy, and cache size. We collected address traces from 

PocketPC while we were executing various applications 

such as “Media Player” and “MP3 player” since they are 

popular embedded multimedia applications which involve 

real-time requirements. Note that the cache size is the most 

important factor to affect miss ratio as shown in Figure 8. 
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Figure 9. Cache line size versus (a) access time per 32-byte 

and (b) energy consumption 

To analyze the optimal cache line size in NAND XIP 

cache, simulation has been done with the memory traces  

which are gathered from the prototyping board. The line 

size of 256-byte shows better numbers in average memory 

access time and in energy consumption over all other cache 

sizes as shown in Figure 9. Therefore, the line size of 

NAND XIP controller is determined to be 256-byte 

hereafter.
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Figure 10. Overall performance comparison of different 

memory architectures: (a) average memory access time and 

(b) energy consumption. 
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Figure 11. Overall booting time and cost comparison of 

different memory architectures. 

Figures 10 and 11 show overall performance 

comparison among different memory architectures based 

on our prototyping results. NOR XIP architecture 

(NOR+SDRAM) shows fast boot time and low power 

consumption at high cost. Even though SDRAM 

shadowing architecture (NAND + SDRAM) achieves high 

performance, it suffers from a relatively long booting time 

and inefficient memory utilization. Finally, our approach 

NAND XIP shows reasonable booting time, 

performance ,and power consumption with outstanding 

cost efficiency. Two implementations of NAND XIP (basic 

and priority) are also compared. The NAND XIP (basic) is 

composed of 256KB cache and 4KB victim cache. On the 

other hand, the NAND XIP (priority) has 64KB cache, 

4KB victim and 2KB PAT. The NAND XIP (priority) has 

advantage of cache size reduction with the assistance of 

system memory and priority based caching. 

6.2. Worst Case Handling 

Even though NAND XIP offers an efficient memory 

system, it may suffer from worst-case handling, namely 

cache miss handling. A straightforward solution is to hold 

the CPU until the requested memory page arrives. This can 

be implemented using wait/ready signals’ handshaking 

method. However, the miss penalty, 35us4  is not trivial 

time especially in case that a fast processor is used. Besides 

CPU utilization problem, if the time-critical interrupt 

request occurs to the system, the interrupt may be lost 

because the processor is waiting for memory’s response. In 

order to solve this problem, a system-wide approach is 

needed. First, OS should handle the cache miss as a page 

fault as in virtual memory management. The CPU also 

should supply “abort” function to restart the requested 

instruction after cache miss handling.  

7. Conclusions 

We enlarged the application of NAND flash to code 

execution area and demonstrated the feasibility of the 

4 It is calculated as sum of NAND initial delay (10us) + 

page read (512 x 50ns). 

proposed architecture in real-life mobile embedded 

environment. As future work, system-wide approach will 

be helpful to exploit NAND flash in embedded memory 

systems. A new task scheduling algorithm, considering the 

read, erase and program operations of NAND flash, will 

utilize system resources more efficiently. Code packing and 

replacement with compiler’s assistance will be achieved in 

near future. In addition, data caching mechanism can be a 

challenging topic as flash write time is getting shortened. 
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