
Cost-Efficient Memory Architecture Design of NAND Flash Memory

Embedded Systems

Chanik Park, Jaeyu Seo, Dongyoung Seo, Shinhan Kim and Bumsoo Kim
Software Center, SAMSUNG Electronics, Co., Ltd.

{ci.park, pelican,dy76.seo, shinhank, bumsoo}@samsung.com

Abstract

NAND flash memory has become an indispensable

component in embedded systems because of its versatile

features such as non-volatility, solid-state reliability, low

cos,t and high density. Even though NAND flash memory

gains popularity as data storage, it also can be exploited

as code memory for XIP (execute-in-place). In this paper,

we present a cost-efficient memory architecture which

incorporates NAND flash memory into an existing memory

hierarchy for code execution. The usefulness of the

proposed approach is demonstrated with real embedded

workloads on a real hardware prototyping board.

1. Introduction

A memory architecture design is a main concern to

embedded system engineers since it dominates the cost,

power, and performance of embedded systems. The typical

memory architecture of embedded systems consists of

ROM for initial bootstrapping and code execution, RAM

for working memory, and flash memory for permanent data

storage. In particular, emerging memory technology, the

flash memory, is becoming an indispensable component in

embedded systems due to its versatile features: non-

volatility, solid-state reliability, low power consumption,

and so on. The most popular flash types are NOR and

NAND. NOR flash is particularly well suited for code

storage and execute-in-place (XIP) 1 applications, which

require high-speed random access. While NAND flash

provides high density and low-cost data storage, it does not

lend itself to XIP applications due to the sequential access

architecture and long access latency.

Table 1 shows different characteristics of various

memory devices. Mobile SDRAM has strong points in

performance but requires high power consumption over the

1 XIP is the execution of an application directly from the

Flash instead of having to download the code into the

systems’ RAM before executing it.

other memories. Fast SRAM or low power SRAM can be

selected according to the trade-off between power

consumption and performance with a high cost. In non-

volatile memories, NOR flash provides fast random access

speed and low power consumption, but has high cost

compared with NAND flash. Even though NAND flash

shows long random read latency, it has advantages in low

power consumption, storage capacity, and fast erase/write

performance in contrast to NOR flash.

Table 1. Characteristics of various memory devices. The

values in the table were calculated based on SAMSUNG

2003 memory data sheets [1-2].

Mobile SDRAM

Low power SRAM

Fast SRAM

NAND

NOR

Memory $/Gb idle

Current (mA)

active

Random Access (16bit)

read write

48

320

614

21

96

75

3

65

10

32

0.5

0.005

5

0.01

0.03

90ns

55ns

10ns

10.1us

200ns

200.5us

210.5us

erase

1.2 sec

90ns

55ns

10ns

2 ms

N.A

N.A

N.A

Even though NAND flash memory is widely used as

data storage in embedded systems, research on NAND

flash memory as code storage are hardly found in industry

or academia.

In this paper, we present a new memory architecture to

enable NAND flash memory to provide XIP functionality.

With XIP functionality in NAND flash, the cost of the

memory system can be reduced since the NAND flash can

be used as not only as data storage but also as code storage

for execution. As a result, we can obtain cost-efficient

memory systems with reasonable performance and power

consumption.

The basic idea of our approach is to exploit the locality

of code access pattern and devise a cache controller for

repeatedly accessed codes. The prefetching cache is used to

hide memory latency resulting from NAND memory

access. In this paper we concentrate on code execution

even though data memory is also an important aspect of

memory architecture. There are two major contributions in

this paper. First, we demonstrate the NAND XIP is feasible

in real-life systems through a real hardware and

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

commercial OS environment. Second, we apply highly

optimized caching techniques geared toward the specific

features of NAND Flash.

The rest of this paper is organized as follows. In the

next section, we describe the trend of memory architecture

for embedded systems. Section 3 reviews related work in

academia and industry. In Sections 4 and 5, we present our

new memory architecture based on NAND XIP. In Section

6, we demonstrate the proposed architecture with real

workloads on a hardware prototyping board and evaluate

cost, performance, and power consumption over existing

memory architectures. Finally, our conclusions and future

work are drawn in Section 7.

2. Motivational Systems: Mobile Embedded

Systems

NOR

(code)

MCU

NAND

(data)

Data

OS OS

App 1

App 2

App 1

NAND DRAM

SRAMNOR

MCU

SRAM

MCU

3G &

SmartPhoneVoice-centric 2G Data-centric 2.5G

(a) (b) (c)

App 2

Figure 1. Mobile System Trend

Figure 1 shows mobile system trend in terms of memory

hierarchy. The first approach is to use NOR and SRAM for

code storage and working memory, respectively, as shown

in Figure 1(a). It is appropriate for low-end phones, which

require medium performance and cost. However, as mobile

systems evolve into data centric and multimedia-oriented

applications, high performance and huge capacity for

permanent storage have become necessary. The second

architecture (Figure 1(b)) seems to meet the requirements

in terms of storage capacity through NAND flash memory,

but its performance is not enough to accommodate 3G

applications which consist of real-time multimedia

applications. In addition, the increased number of

components increases system cost. The third architecture

(Figure 1(c)) eliminates NOR flash memory and uses

NAND flash memory for using shadowing 2 technique.

Copying all code into RAM offers the best performance

possible, but contributes to the slow boot process. A large

amount of SDRAM is necessary to hold both the OS and

the applications. The higher power consumption from

power hungry SDRAM memory is another problem for

battery-operated systems.

2 During system booting time, entire code image is copied

from permanent storage into systems’ RAM for execution.

As an improved solution of the third architecture in

Figure 1(c), demand paging can be used with the assistance

of operating system and it may reduce the size of SDRAM.

However, this approach is not applicable to low or mid-end

mobile system since it requires heavy virtual memory

management code and MMU.

Thus, it is important to investigate an efficient memory

system in terms of cost, performance and power

consumption.

3. Related Work

In the past, researchers have exploited NOR Flash

memory as caches for magnetic disks due to its low power

consumption and high-speed characteristics. eNvy focused

on developing a persistent storage architecture without

magnetic disks [7]. Fred et al showed that flash memory

can reduce energy consumption by an order of magnitude,

compared to magnetic disk, while providing good read

performance and acceptable write performance [9]. B.

Marsh et al examined the impact of using flash memory as

a second-level file system buffer cache to reduce power

consumption and file access latency on a mobile computer

[8].

Li-Pin et al investigated the performance issue of NAND

flash memory storage subsystems with a striping

architecture, which uses I/O parallelism [10]. In industry

[5], NAND XIP is implemented using small size of buffer

and I/O interface conversion, but the XIP area is limited to

boot code, thus OS and application codes should be copied

to system memory.

In summary, even though several researches have been

made to obtain the maximum performance and low power

consumption from data storage, few efforts to support XIP

in NAND flash are found in academia or industry.

4. NAND XIP Architecture

In this section, we describe NAND XIP architecture.

First, we look into the structure of NAND flash and

illustrate basic implementation of NAND XIP based on

caching mechanism.

4.1. Background

A NAND flash memory consists of a fixed number of

blocks, where each block has 32 pages and each page

consists of 512 bytes main data and 16 bytes spare data as

shown in Figure 2. Spare data can be used to store auxiliary

information such as bad block identification and error

correction code (ECC) for associated main data. NAND

flash memories are subject to a condition called “bad

block”, in which a block cannot be completely erased or

cannot be written due to partial or 2-bit errors. Bad blocks

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

may exist in NAND flash memory when shipped or may

occur during operation.

Spare dataMain data

512 bytes 16 bytes

1 Block
=32 pages

Data register
Spare

register

I/O bus

Figure 2. Structure of NAND flash memory

In order to implement the NAND XIP, we should

consider the following points.

Average memory access time

Worst case handling

Bad block management

The performance of memory system is measured by

average access time [3]. In order to implement XIP

functionality, the average access time of NAND flash

should be comparable to that of other memories such as

NOR, SRAM and SDRAM. Though average memory

access time is a good metric for performance evaluation,

worst-case handling, or cache miss handling is another

problem in practical view since most mobile systems such

as cellular phones include time-critical interrupt handling

such as call processing. For instance, if the time-critical

interrupt occurs during cache miss handling, the system

may not satisfy given deadline and to make it worse, it may

lose data or connection. The third aspect to be considered

in NAND XIP is to manage bad blocks, which are inherent

in NAND flash memory because bad blocks cause

discontinuous memory space, which is intolerable for code

execution.

4.2. Basic Implementation

NAND

S
y
s
te

m
 in

te
rfa

c
e

F
la

s
h

 in
te

rfa
c
e

Cache

(SRAM)

Boot

Loader

Prefetch

Control logic

DATA [0:7]

ADDR [0:12]

CE#,OE#,WE#

BUSY#

Figure 3. NAND XIP controller

The proposed architecture consists of a small amount of

SRAM for cache, interface conversion logic, the control

logic and NAND Flash as shown in Figure 3. Interface

conversion is necessary to connect the I/O interface of

NAND flash to memory bus. For cache mechanism, direct

map cache with victim cache is adopted based on Jouppi’s

work in [4] with optimization for NAND flash. In [4], the

victim cache is accessed on a main cache miss; if the

address hits the victim cache, the data returned to the CPU

and at the same time it is promoted to the main cache; the

replaced block in the main cache is moved to the victim

cache, therefore performing a “swap”. If the victim cache

also misses, NAND flash access is performed; the

incoming data fills the main cache, and the replaced block

will be moved to the victim cache. In next section, we

modify the above “swap” algorithm using system memory

and page address translation table (PAT). The prefetching

cache is used to hide memory latency resulting from

NAND memory access. Several hardware prefetching

techniques can be found in literature [12]. In our case,

prefetching information is analyzed through profiling

process and the prefetching information is stored in spare

data at code image building time.

5. Intelligent Caching: Priority-based Caching

Though the basic implementation is suitable for

application code which shows its spatial and temporal

localities, it may be less effective in systems code which

has a complex functionality, a large size, and interrupt-

driven control transfers among its procedures [13].

Torrellas et al. presented that the operating system has the

characteristics that large sections of its code are rarely

accessed and suffers considerable interference within

popular execution paths [13]. For example, periodic timer

interrupt, rarely-executed special-case code, and plenty of

loop-less code disrupt the localities. On the other hand,

real-time applications should be retained as long as

possible to satisfy the timing constraints3. In this paper, we

distinguish the different cache behavior between system

and application codes, and adapt it to the page-based

NAND architecture. We apply profile-guided static

analysis of code access pattern.

We can divide code pages into three categories

depending on their access cost: high priority, mid priority

and low priority pages. Even though the priority can be

determined by various objectives, we set the priority to

pages based on the number of references to pages and their

criticality. For example, if a specific page is referenced

more frequently or has time critical codes, it is classified as

a high-priority page and should be cached or retained in

cache to reduce the later access cost in case that the page is

in NAND flash memory. OS-related code, system libraries

and real-time applications have high-priority pages. On the

3 In this paper, real-time applications indicate multimedia

applications with soft real-time constraints.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

other hand, mid-priority page is defined to be normal

application code which is handled by normal caching

policy. Finally, low-priority page corresponds to sequential

code such as initialization code, which is rarely executed.

PAT is introduced to remap pages in bad blocks to pages in

good blocks and to remap requested pages to swapped

pages in system memory. We illustrate the caching

mechanism in detail in Figure 4. First, when page A with

high-priority is requested, it is cached from NAND flash to

main cache. Next, when page B is requested from the CPU,

it should be moved to main cache or system memory. Here

assuming that page B is in conflict with page A, page B is

moved to system memory (SRAM/SDRAM) since page B

is low priority page (“L” in spare area of NAND flash

memory means low-priority). At the same time, PAT is

updated so that later access to page B is referred to system

memory. Again, when page C is requested and in conflict

with page A, page C replaces page A and page A is

discarded from main cache since C’s priority is high. The

evicted page A is moved to victim cache. In summary, on

NAND flash’s page demand, the controller discards or

swaps existing cache page according to the priority

information stored in spare area data. The detail algorithm

is explained in Figure 5. Another usage of spare area data

is to store prefetching information based on profiling

information gathered during code execution. This static

prefetching technique improves memory latency hiding

without miss penalty from miss-prediction at run-time.

C

Main cache Control

Data bus

Address bus

A H
B

NAND SRAM/SDRAM

A

Vic tim

Page address translation table

B L

C H

Figure 4. Intelligent Caching Architecture

P rio rity C a ch in g (a d d re ss)

{

p a g e = co n ver t(a d d re ss);

if (isIn P A T (p a g e))

m a in m e m o ry h it;

e lse i f(is In M a in C a ch e (p a g e))

C a ch e h it;

e lse i f(is In V ic tim C a ch e (p a g e))

V ic tim h it;

e lse { // m iss , fe tc h a p a g e fro m N A N D fla sh m em o ry

p a g e_ p rio rity = N A N D [p a g e] .p r io rity ;

if (c a ch e[p a g e % C A C H E _ S IZ E] .p rio r ity = = H IG H)

N A N D [p a g e] m a in m em o ry ;

e lse if (ca ch e [p a g e% C A C H E _ S IZ E] .p r io rity = = M ID)

{

ca c h e[p a g e % C A C H E _ S IZ E] v ic tim ;

N A N D [p a g e] c a ch e[p a g e % C A C H E _ S IZ E] ;

}

e lse

N A N D [p a g e] ca ch e [p a g e% C A C H E _ S IZ E] ;

}

}

Figure 5. Intelligent Caching Architecture

6. Experimental Setup

This section presents our experiment environment. Our

environment consists of a prototyping board, our in-house

cache simulator with pattern analysis and a real workload,

namely PocketPC [6] as shown in Figure 6. The

prototyping board is composed of: main board and

daughter board (a yellow rectangle in Figure 6). The main

board has ARM9-based micro-controller, SDRAM, NOR

flash and so on. The daughter board contains an FPGA for

cache controller and victim cache, fast SRAM for tag and

cache memory, and two NAND flash memories. The

daughter board is used not only to implement a real cache

configuration on FPGA but also to gather memory address

traces from running applications. In Figure 7, one NAND is

dedicated to NAND XIP and the other NAND is dedicated

for collecting memory traces from host bus. Trace

collection function is started and stopped by using manual

switches and manual switch’s on/off interval determines

the time period for trace gathering. Collected address traces

are stored for cache simulator.

The specification of main processor and NAND flash

is shown in Table 2. The cache simulator explores various

parameters such as miss rate, replacement policy,

assoicativity, and cache size based on memory traces from

the prototyping board. The real embedded workload,

PocketPC supports XIP-enabled image based on the

existing ROMFS file systems in which each application can

be directly executed without being loaded into RAM.

Table 1: The specification of the prototyping board

Parameter Configuration

CPU clock

L1 Icache

200 MHz

64way, 32byte line, 8KB

NAND read initial latency 10us

NAND serial read time 50ns

Bus width 16bit

SRAM read time 10ns

SDRAM read time 90ns

NOR read time 200ns

NAND

SRAM

FPGA
PocketPC

ARM9-based

Processor

SDRAM

Cache simulatorCache simulator Memory
Trace

cache

parameters
memory

addresses

Pattern
analysis

Figure 6. A prototyping board for NAND XIP

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

Cache

Controller

C
o
n
tr

o
l

&
 D

a
ta

 p
a
th

Victim
Cache

NAND
Flash

Memory

32MB

DATA
SRAM
DATA
SRAM

Tag
SRAM
Tag
SRAM

256KB10KB

FPGA4KB
NAND
Flash

Memory

32MB

NAND flash
for trace
collection

NAND flash
for XIP Host

Bus

switch

Figure 7. FPGA Prototyping for NAND XIP

6.1. Experimental Results

In Figure 8, we compare the miss ratio over various

configuration parameters such as associativity, replacement

policy, and cache size. We collected address traces from

PocketPC while we were executing various applications

such as “Media Player” and “MP3 player” since they are

popular embedded multimedia applications which involve

real-time requirements. Note that the cache size is the most

important factor to affect miss ratio as shown in Figure 8.

0
2
4
6
8

10
12

F
IF

O

L
R

U

ra
nd

om F
IF

O

L
R

U

ra
nd

om F
IF

O

L
R

U

ra
nd

om

Dire c t
ma p

2- w a y 4- w a y 8- w a y

Re p la c e me nt/As s o c ia tiv ity

M
is

s
R

at
io

(%
)

32KB 64KB 128KB 256KB 512KB

Figure 8. Associativity with different replacement policies and

cache sizes versus miss ratio

0
50

100
150
200
250
300
350
400
450
500

64 128 256 512

Ca c he Line Size (Byte s)

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

32KB 64KB 128KB 256KB 512KB

(a)

0

10000

20000

30000

40000

64 128 256 512

Ca c he Line S ize (By te s)

E
ne

rg
y

(n
s*

m
W

)

32KB 64KB 128KB 256KB 512KB

(b)

Figure 9. Cache line size versus (a) access time per 32-byte

and (b) energy consumption

To analyze the optimal cache line size in NAND XIP

cache, simulation has been done with the memory traces

which are gathered from the prototyping board. The line

size of 256-byte shows better numbers in average memory

access time and in energy consumption over all other cache

sizes as shown in Figure 9. Therefore, the line size of

NAND XIP controller is determined to be 256-byte

hereafter.

0

100

200

300

400
Ave ra g e
Me mo ry
Ac c e s s

Time
(c y c le)

NAND XIP
(b a s ic)

S DRAM
s ha do w ing

Arc hite c tu ra l Cho ic e s

32KB 64KB 128KB 256KB 512KB

(a)

0
5000

10000
15000
20000
25000
30000
35000
40000

Ene rgy (ns * mW)

NAND
XIP(ba s ic)

NAND XIP
(priority)

SDRAM
s ha dowing

NOR XIP

Arc hite c tura l Choic e s

32KB 64KB 128KB 256KB 512KB

(b)

Figure 10. Overall performance comparison of different

memory architectures: (a) average memory access time and

(b) energy consumption.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

NAND(64MB)+SDRAM(64MB)

NAND XIP(64MB)+SRAM(256KB)

Controller+SDRAM(32MB)

NOR(64MB)+SDRAM(32MB)

26

35

60

Components
Cost

($)

15

14

13

Booting

Time (sec)

NAND XIP(64MB)+SRAM(64KB)

Controller+SDRAM(32MB)
2414

SDRAM Shadowing

NAND XIP (basic)

NOR XIP

Architectural Choices

NAND XIP (priority)

Figure 11. Overall booting time and cost comparison of

different memory architectures.

Figures 10 and 11 show overall performance

comparison among different memory architectures based

on our prototyping results. NOR XIP architecture

(NOR+SDRAM) shows fast boot time and low power

consumption at high cost. Even though SDRAM

shadowing architecture (NAND + SDRAM) achieves high

performance, it suffers from a relatively long booting time

and inefficient memory utilization. Finally, our approach

NAND XIP shows reasonable booting time,

performance ,and power consumption with outstanding

cost efficiency. Two implementations of NAND XIP (basic

and priority) are also compared. The NAND XIP (basic) is

composed of 256KB cache and 4KB victim cache. On the

other hand, the NAND XIP (priority) has 64KB cache,

4KB victim and 2KB PAT. The NAND XIP (priority) has

advantage of cache size reduction with the assistance of

system memory and priority based caching.

6.2. Worst Case Handling

Even though NAND XIP offers an efficient memory

system, it may suffer from worst-case handling, namely

cache miss handling. A straightforward solution is to hold

the CPU until the requested memory page arrives. This can

be implemented using wait/ready signals’ handshaking

method. However, the miss penalty, 35us4 is not trivial

time especially in case that a fast processor is used. Besides

CPU utilization problem, if the time-critical interrupt

request occurs to the system, the interrupt may be lost

because the processor is waiting for memory’s response. In

order to solve this problem, a system-wide approach is

needed. First, OS should handle the cache miss as a page

fault as in virtual memory management. The CPU also

should supply “abort” function to restart the requested

instruction after cache miss handling.

7. Conclusions

We enlarged the application of NAND flash to code

execution area and demonstrated the feasibility of the

4 It is calculated as sum of NAND initial delay (10us) +

page read (512 x 50ns).

proposed architecture in real-life mobile embedded

environment. As future work, system-wide approach will

be helpful to exploit NAND flash in embedded memory

systems. A new task scheduling algorithm, considering the

read, erase and program operations of NAND flash, will

utilize system resources more efficiently. Code packing and

replacement with compiler’s assistance will be achieved in

near future. In addition, data caching mechanism can be a

challenging topic as flash write time is getting shortened.

References

[1] Samsung Electronics Co., “NAND Flash Memory &

SmartMedia Data Book”, 2002.

[2] http://www.samsung.com/Products/Semiconductor/index.htm

[3] J.L. Hennessy and D.A. Patterson, “Computer Architecture:

A Quantitative Approach”, 2nd edition, Morgan Kaufman

Publishers, 1996.

[4] N. Jouppi, “Improving Direct-Mapped Cache Performance

by the Addition of a Small Fully-Associative Cache and

Prefetch Buffers,” ISCA-17:ACM/IEEE International

Symposium on Computer Architecture, pp. 364-373, May

1990.

[5] http://www.m-sys.com/files/documentation/doc/

Mobile_DOC_G3_DS_Rev1.0.pdf

[6] Microsoft Co., “Pocket PC 2002”,

http://www.microsoft.com/mobile/pocketpc

[7] M. Wu, Willy Zwaenepoel, “eNVy: A Non-Volatile, Main

Memory Storage System”, Proc. Sixth Int’l Conf. On

Architectural Support for Programming Languages and

Operating Sys. (ASPLOS VI), San Jose, CA, Oct. 1994, pp.

86-97.

[8] B. Marsh, F. Douglis, and P. Krishnan, “Flash memory file

caching for mobile computers,” Proc. 27th Hawaii Conf. On

Sys. Sciences, Wailea, HI, Jan. 1993, pp. 451-460.

[9] F. Douglis et al., “Storage Alternatives for Mobile

Computers”, Proc. First USENIX Symp. On Operating Sys.

Design and Implementation, Monterey, CA, pp 25-37, Nov.

1994.

[10] Li-Pin Chang, Tei-Wei Kuo, "An Adaptive Striping

Architecture for Flash Memory Storage Systems of

Embedded Systems," The 8th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS

2002) September, 2002. San Jose, California.

[11] J. R. Lorch and A. J. Smith, “Software Strategies for

Portable Computer Energy Management”, IEEE Personal

Communications, June, 1998.

[12] C. Young, E. Shekita, “An Intelligent I-Cache Prefetch

Mechanism,” in Proceedings of the International

Conferences on Computer Design, pp. 44-49, Oct 1993.

[13] Josep Torrellas, Chun Xia, and Russell Daigle, “Optimizing

Instruction Cache Performance for Operating System Intensive

Workload”, Proc. HPCA-1: 1st Intl. Symposium on High-

Performance Computer Architecture, p.360, January 1995.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

